Note 343

# A Coordination Polymer of Bis-[2-(dimethylamino)ethanolato]dimethylsilane with a Lithium Chloride Dimer

Michael Hagemann<sup>a,b</sup>, Tania Pape<sup>b</sup>, and Norbert W. Mitzel<sup>a,b</sup>

 <sup>a</sup> Lehrstuhl für Anorganische Chemie und Strukturchemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany

b NRW Graduate School of Chemistry, Universität Münster, Münster, Germany

Reprint requests to Prof. Dr. N. W. Mitzel. Fax: (+49)521 106 6026. E-mail: mitzel@uni-bielefeld.de

*Z. Naturforsch.* **2009**, *64b*, 343 – 346; received January 19, 2009

The reaction of lithium 2-(dimethylamino)ethanolate with Me<sub>2</sub>SiCl<sub>2</sub> yielded a lithium chloride adduct of Me<sub>2</sub>Si-(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>. Despite the application of an excess of Me<sub>2</sub>SiCl<sub>2</sub>, the formation of ClMe<sub>2</sub>SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> was not observed. [Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub>] was characterised by NMR spectroscopy and determination of its crystal structure by X-ray diffraction. In the solid state it forms endless chains consisting of Li<sub>2</sub>Cl<sub>2</sub> rhombi, with the lithium atoms chelated by the O and N atom of one OCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub> substituent of Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> units.

Key words: Aggregate, Silicon, Lithium, N,O-Ligands, Crystal Structure

## Introduction

In the course of our studies on the intramolecular interactions between silicon and nitrogen atoms in flexible ring systems, we have addressed various classes of compounds. These include systems capable of forming three-membered ring systems of the type SiCN [1], SiNN [2] and SiON [3], and five-membered ring systems with the atom sequences SiCCCN [4] and SiOCCN [5]. In the latter series we observed recently extreme differences between calculated gas phase structures; the Si···N distance in Cl<sub>3</sub>SiOCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub> *e.g.* is more than 1 Å longer in the gas phase than in the crystal. These differences are much smaller in Cl<sub>2</sub>HSiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> [5]. Looking for the reasons for such large changes we tried to get hold of the analogous compound ClMe<sub>2</sub>SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>.

### **Results and Discussion**

We had previously tried reacting LiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> with H<sub>2</sub>SiCl<sub>2</sub> with the intention to prepare ClH<sub>2</sub>-SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>, but always obtained mixtures of ClH<sub>2</sub>SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> and Cl<sub>2</sub>HSiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>, which we were unable to separate [5]. Since these attempts to isolate pure ClH<sub>2</sub>SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> were not successful, we aimed at synthesising the dimethyl derivative ClMe<sub>2</sub>SiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> by the reaction of LiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> with Me<sub>2</sub>SiCl<sub>2</sub>. As a test, the reaction of LiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> with Me<sub>3</sub>SiCl was performed and led to the known Me<sub>3</sub>SiOCH<sub>2</sub>CH<sub>2</sub>-NMe<sub>2</sub> [6].

The reaction of Me<sub>2</sub>SiCl<sub>2</sub> and LiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> was performed in tetrahydrofuran at 0 °C. The product could be crystallised, but not purified by distillation. Slow cooling of the reaction solution (solvent tetrahydrofuran) to -78 °C afforded single crystals suitable for an X-ray diffraction experiment. These crystals deliquesced upon warming to ambient temperature. Attempts to achieve crystallisation from hydrocarbon solvents yielded also solid material, but this was not containing single crystals.

The <sup>1</sup>H NMR spectrum of the crystalline product showed it to contain the doubly substituted Me<sub>2</sub>-Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>, as there are four signals with an integral ratio of 6 (0.17 ppm): 12 (2.13 ppm): 4 (2.44 ppm): 4 (3.81 ppm). Besides this the signals of tetrahydrofuran were detected. The <sup>13</sup>C NMR data were also consistent with the formula Me<sub>2</sub>Si(OCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>. A resonance at 13 ppm was detected in the <sup>29</sup>Si NMR spectrum. It has to be mentioned that Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> has been described earlier in the literature and was then made from the sodium salt NaOCH2CH2NMe2 and Me2SiCl2 [7]. Also noteworthy is the fact that carbosilanes with OCH<sub>2</sub>CH<sub>2</sub>-NMe<sub>2</sub> side-arms are nowadays popular compounds for the construction of polyfunctional molecules including extended dendrimer architectures [8].

Analysis of the X-ray diffraction data gave a result consistent with the NMR data but showing an additional component, LiCl, which was not observed by the applied NMR methods. The formula of the crystals is thus Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub>·THF with four molecules in the unit cell. The crystals belong to the monoclinic space group *C2/c*. In the crystal the molecules form polymeric chains. Each Me<sub>2</sub>-

Note Note

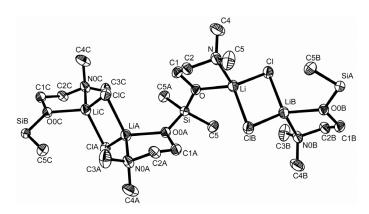



Fig. 1. Cut-out of the structure of Me<sub>2</sub>Si(OCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub>·THF. One molecule of Me<sub>2</sub>-Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> is connected to the two adjacent ones through a Li<sub>2</sub>Cl<sub>2</sub> unit on each side. The THF molecule and the hydrogen atoms are omitted for reasons of clarity.

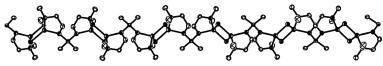



Fig. 2. Polymeric chain of Li<sub>2</sub>Cl<sub>2</sub>···Me<sub>2</sub>-NCH<sub>2</sub>CH<sub>2</sub>OSi(Me)<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> units in the crystal.

Scheme 1. Connectivity pattern in the crystal structure of Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub>·THF.

Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> unit is connected to the adjacent ones by rectangular Li<sub>2</sub>Cl<sub>2</sub> units. The lithium atoms of these rectangles are chelated by the O and N atoms of OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> arms of two different Me<sub>2</sub>Si(OCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> units, so that the chain consists of Li<sub>2</sub>Cl<sub>2</sub>····Me<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>OSi(Me)<sub>2</sub>OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> units as depicted in Scheme 1 and Fig. 1. The THF molecules are not connected to the Li atoms in the structure; the closest Li···O(thf) distance is 5.47 Å.

The planes O-Li-N and Cl-LiB-ClB are almost perpendicular to one another. No interatomic distances smaller than the sum of the van-der-Waals radii between the polymeric chains shown in Fig. 2 are observed, that would indicate more than simple packing of these chains.

The LiOCCN five-membered rings adopt an envelope-like conformation with typical atomic distances and angles. As expected the angles at the silicon-substituted oxygen atoms are wide at 120.3(2)°, which is typical for such situations. The sum of angles at the oxygen atoms is 358.6°, which demonstrates that they have almost planar coordination geometry. Similar findings of a planar coordination en-

Table 1. Selected bond lengths (Å) and angles (deg) of Me<sub>2</sub>-Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub>·THF.

| Distance | (Å)      | Angle     | (deg)    |
|----------|----------|-----------|----------|
| Si-O     | 1.658(2) | C5-Si-O   | 104.8(1) |
| Si-C5    | 1.837(2) | Si-O-C1   | 120.3(2) |
| Cl-Li    | 2.301(3) | O-C1-C2   | 108.6(2) |
| Cl–LiB   | 2.331(4) | N-C1-C2   | 112.1(2) |
| O-C1     | 1.453(2) | C1-O-Li   | 108.7(2) |
| O-Li     | 2.025(4) | C2-N-Li   | 99.8(2)  |
| C1-C2    | 1.505(3) | O-Li-N    | 86.5(2)  |
| Li-N     | 2.087(4) | Li-Cl-LiB | 76.6(2)  |
| N-C2     | 1.467(3) | Cl-Li-ClB | 103.4(1) |
| N-C3     | 1.472(3) |           |          |
| N-C4     | 1.462(3) |           |          |

vironment of oxygen have been reported for the simple systems  $(H_3Si)_2O$  [9] and  $H_3SiOCH_3$  [10] for their interactions between two such molecules each under formation of  $Si\cdots O$  contacts. This implies that the donating lone pair at the silylated oxygen atom has  $sp^2$  character.

The Li<sub>2</sub>Cl<sub>2</sub> ring in Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> · Li<sub>2</sub>Cl<sub>2</sub> · THF has two different Li···Cl distances at 2.301(3) and 2.331(4) Å, which are in the same range as the Li···Cl contacts in [LiCl·2THF]<sub>2</sub> at 2.342(3) and 2.308(3) Å [11], in [LiCl·Et<sub>2</sub>O]<sub>4</sub> at 2.35(1)−2.40(1) Å [12], and in (TMEDA)LiClAlMe<sub>2</sub>C(SiMe<sub>3</sub>)-PMe<sub>2</sub> at 2.369(6) [13]. Even in [<sup>t</sup>Bu<sub>2</sub>AlCH<sub>2</sub>N<sup>t</sup>Pr<sub>2</sub> · LiCl]<sub>2</sub> the Li–Cl distances are of similar lengths at 2.339(4) and 2.374(4), despite that there the Li<sub>2</sub>-Cl<sub>2</sub> rings are bonded simultaneously at the Li and Cl atoms to the difunctional Lewis acid/base <sup>t</sup>Bu<sub>2</sub>-AlCH<sub>2</sub>N<sup>t</sup>Pr<sub>2</sub> [14]. The Li–Cl–Li angle in Me<sub>2</sub>Si-(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> · Li<sub>2</sub>Cl<sub>2</sub>·THF at 76.6(2)° and the

Note 345

Cl–Li–Cl angle at  $103.4(1)^{\circ}$  are also in the range of values found in [LiCl·2THF]<sub>2</sub> [Li–Cl–Li 77.1(1)°, Cl–Li–Cl  $102.9(1)^{\circ}$ ] [10], in [LiCl·Et<sub>2</sub>O]<sub>4</sub> [Li–Cl–Li 77.3(3)–81.5(4)°, Cl–Li–Cl 97.5(4)–  $102.0(4)^{\circ}$ ] [11] and in [ $^{f}$ Bu<sub>2</sub>AlCH<sub>2</sub>N $^{\dot{f}}$ Pr<sub>2</sub>·LiCl]<sub>2</sub> [80.8(1)° and Cl–Li–Cl  $99.2(1)^{\circ}$ ] [14]. The Li–O and Li–N distances of 2.025(4) and 2.087(4) are again in a typical range [9–12] (Table 1).

The formation of Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub> as an Li<sub>2</sub>Cl<sub>2</sub> adduct in a reaction of one equivalent LiOCH<sub>2</sub>-CH<sub>2</sub>NMe<sub>2</sub> with one equivalent of Me<sub>2</sub>SiCl<sub>2</sub> was repeatedly observed. Changing the reaction conditions (hydrocarbon solvent, low temperature) did not change the product. Conditions for the formation of the monosubstituted product Me<sub>2</sub>ClSiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> could not be found, even if a large excess of Me<sub>2</sub>SiCl<sub>2</sub> was employed. Obviously this mono-substituted silane reacts faster with the lithiated aminoethanol compared to Me<sub>2</sub>SiCl<sub>2</sub>. No other product could be observed.

#### **Experimental Section**

All operations were carried out under a dry and oxygenfree nitrogen atmosphere using standard Schlenk techniques. Solvents were dried and saturated with nitrogen by standard methods. Me<sub>2</sub>SiCl<sub>2</sub> and 2-(dimethylamino)ethanol were purchased from a commercial source and used after distillation. NMR spectra were recorded on a Bruker AV 400 NMR spectrometer. Chemical shifts are reported in ppm with reference to the residual solvent signals for <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy and to external SiMe<sub>4</sub> for <sup>29</sup>Si NMR spectroscopy. Elemental analyses were carried out on a VARIO E1 III CHNS instrument. IR spectra were recorded on a Midac Prospect IR spectrometer. Mass spectra were recorded on a Varian MAT 212 instrument.

#### Synthesis

LiOCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub> (3.3 g, 35 mmol) was dissolved in THF (30 mL). The reaction mixture was cooled to 0 °C. At this temperature Me<sub>2</sub>SiCl<sub>2</sub> (4.85 g, 37.8 mmol) was slowly added. The reaction solution was stirred for two hours. The

mixture was filtered through a cannula fitted with a filter. The resulting clear solution was slowly cooled to -78 °C to afford a crystalline product, which is a liquid at r. t. By recrystallisation single crystals suitable for X-ray diffraction were grown.  $^{-1}$ H NMR (400 MHz,  $C_6D_6$ , 25 °C):  $\delta = 0.17$  (s, 6H,  $^{1}J_{\text{CH}} = 118$  Hz,  $\text{Si}(\text{C}H_3)_2$ ), 2.13 (s, 12H, N(CH<sub>3</sub>)<sub>2</sub>), 2.44 (t, 6H,  $^{3}J_{\text{HH}} = 6.0$  Hz, NCH<sub>2</sub>), 3.81 (t, 6H,  $^{3}J_{\text{HH}} = 6.0$  Hz, OCH<sub>2</sub>).  $^{-13}$ C NMR (100 MHz,  $C_6D_6$ , 25 °C):  $\delta = -0.8$  (Si(CH<sub>3</sub>)<sub>2</sub>), 45.1 (N(CH<sub>3</sub>)<sub>2</sub>), 58.4 (NCH<sub>2</sub>), 61.8 (OCH<sub>2</sub>).  $^{-29}$ Si DEPT-19.5-NMR (79.5 MHz,  $C_6D_6$ ):  $\delta = 13$ .

#### Crystal structure determination

Diffraction data for Me<sub>2</sub>Si(OCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>)<sub>2</sub>·Li<sub>2</sub>Cl<sub>2</sub> · THF were collected with a Bruker SMART 6000 CCD diffractometer equipped with a rotating anode at 153(2) K using Goebel mirror-monochromated  $CuK_{\alpha}$  radiation ( $\lambda$  = 1.54178 Å). A crystal was selected and prepared under perfluoropolyether and mounted in a drop of it onto the tip of a glass fibre on the goniometer head of the diffractometer. The structure was solved by Direct Methods and refined with fullmatrix least-squares procedures against  $F^2$  (SHELXTL) [15].  $C_{14}H_{34}Cl_2Li_2N_2O_3Si$ ,  $M_r = 391.30$ , crystal size =  $0.2 \times$  $0.2 \times 0.2 \text{ mm}^3$ , monoclinic crystal system, space group C2/c,  $a = 15.6254(6), b = 12.6124(6), c = 12.2193(5) \text{ Å}, \beta =$  $110.941(3)^{\circ}$ ,  $V = 2249.1(2) \text{ Å}^3$ , T = 153(2) K, Z = 4,  $\rho_{\text{calc}} =$ 1.156 g cm<sup>-3</sup>,  $\mu(\text{Cu}K_{\alpha}) = 3.201 \text{ mm}^{-1}$ . 6296 scattering intensities were collected of which 2074 were independent and 1737 met the "observed" criterion  $[I \ge 2\sigma(I)]$ .  $R_1 =$ 0.0395,  $wR_2 = 0.1013$  for 1737 scattering intensities with  $I \ge 2\sigma(I)$ , and  $R_1 = 0.0474$ ,  $wR_2 = 0.1058$  for all data.  $\Delta \rho_{\text{fin}} =$  $0.34/-0.30 \text{ e Å}^{-3}$ .

CCDC 716817 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data\_request/cif.

## Acknowledgements

We are grateful to the NRW Graduate School of Chemistry at Münster (GSC-MS) for a Ph. D. stipend for M. H. and to Deutsche Forschungsgemeinschaft. The authors thank Dr. Alexander Hepp (Münster) for recording NMR data.

- [1] a) N. W. Mitzel, K. Vojinović, T. Foerster, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, *Chem. Eur. J.* 2005, 11, 5114; b) N. W. Mitzel, C. Kiener, D. W. H. Rankin, *Organometallics* 1999, 18, 3437.
- [2] a) N. W. Mitzel, *Chem. Eur. J.* **1998**, *4*, 692, b) K. Vojinović, L. McLachlan, D. W. H. Rankin, N. W. Mitzel, *Chem. Eur. J.* **2004**, *10*, 3033.
- [3] a) N. W. Mitzel, A. J. Blake, D. W. H. Rankin, J. Am. Chem. Soc. 1997, 119, 4143; b) N. W. Mitzel, U. Losehand, Angew. Chem. 1997, 109, 2897; Angew. Chem., Int. Ed. Engl. 1997, 36, 2807; c) N. W. Mitzel, U. Lose-
- hand, J. Am. Chem. Soc. 1998, 120, 7320; d) U. Losehand, N. W. Mitzel, Inorg. Chem. 1998, 37, 3175; e) N. W. Mitzel, U. Losehand, A. Wu, D. Cremer, D. W. H. Rankin, J. Am. Chem. Soc. 2000, 112, 4471; f) N. W. Mitzel, K. Vojinović, R. Fröhlich, T. Foerster, D. W. H. Rankin, J. Am. Chem. Soc. 2005, 127, 13705; g) M. Woski, R. J. F. Berger, N. W. Mitzel, Dalton Trans. 2008, 5652.
- [4] M. Hagemann, R.J.F. Berger, S.A. Hayes, H.-G. Stammler, N.W. Mitzel, *Chem. Eur. J.* 2008, 14, 11027.

Note Note

[5] M. Hagemann, R. J. F. Berger, N. W. Mitzel, *Inorg. Chem.* 2008, 47, 10554.

- [6] a) R. Krebs, D. Schomburg, R. Reinhard; Z. Naturforsch. 1985, 40b, 282; b) M. G. Voronkov, Y. A. Lukina, V. M. D'yakov, M. V. Sigalov, J. Gen. Chem. USSR (Engl. Transl.) 1983, 53, 703; Zh. Obsh. Khim. 1983, 53, 803; c) W. Haubold, J. Hrebicek, G. Sawitzki, Z. Naturforsch. 1984, 39b, 1027.
- [7] a) E. Larsson, Acta Chem. Scand. 1954, 8, 898;
  b) E. Y. Lukevits, J. Gen. Chem. USSR (Engl. Transl.)
  1967, 37, 1317; Zh. Obsh. Khim. 1967, 37, 1390;
  c) E. Y. Ladilina, V. V. Semenov, T. G. Mushtina, M. A. Lopatin, Y. A. Kurskii, A. I. Kirillov, G. A. Domrachev, Russ. Chem. Bull. 2002, 51, 2277; Izv. Akad. Nauk, Ser. Khim. 2002, 51, 2115.
- [8] P. Ortega, J. F. Bermejo, L. Chonco, E. de Jesus, F. J. de la Mata, G. Fernández, J. C. Flores, R. Gómez, M. J. Serramía, M. A. Muñoz-Fernandez, Eur. J. Inorg. Chem. 2006, 1388, and refs. therein.

- [9] M. J. Barrow, E. A. V. Ebsworth, M. M. Harding, *Acta Crystallogr.* 1979, 35B, 2093.
- [10] A. J. Blake, M. Dyrbush, E. A. V. Ebsworth, S. G. D. Henderson, *Acta Crystallogr.* 1988, C44, 1 – 3.
- [11] F. E. Hahn, S. Rupprecht, Z. Naturforsch. 1991, 46b, 143.
- [12] N. W. Mitzel, C. Lustig, Z. Naturforsch. 2001, 56b, 443.
- [13] H. H. Karsch, K. Zellner, G. Müller, *Organometallics*, 1991, 10, 2884.
- [14] X. Tian, R. Fröhlich, N. W. Mitzel, *Dalton Trans.* 2005, 380
- [15] a) G. M. Sheldrick, SHELXTL (version 6.1), Bruker AXS Inc., Madison, Wisconsin (USA) 2000; b) G. M. Sheldrick, SHELXL-93, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1993.